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Abstract

This paper examines the effect of centrifuge shape on the separation time for a
two-phase mixture in a centrifuge with a meridional barrier. The work is based on
the results of Greenspan and Ungarish. Both the inner radius of the centrifuge
and the shape of the lids affect the separation time. It was found, through
numerical experiments, that altering the shapes of the lids yields more en-
hancement than increasing the inner radius. Also, centrifuges with parallel,
linear. sloped lids give better results than those with lids having slight or
moderate curves superimposed on the linear lids. The curvature appears to
interfere with the Boycott effect. However, a sawtooth pattern superimposed on
the linear lids is an improvement over the linear lids.

1. INTRODUCTION

In this paper we consider a centrifuge that is filled with an in-
compressible fluid containing small suspended particles of a second
phase, either solid particles or droplets of a second, immiscible,
incompressible fluid. We examine the effect of centrifuge shape on the
time required for separation to occur. Our work is based on that of
Greenspan and Ungarish (/) who have already simplified the governing
equations and have analyzed several important centrifuge shapes.

The Boycott effect in gravitational settling, most recently studied by
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Acrivos and Herbolzheimer (2), suggests that aiteration of centrifuge
geometry can enhance separation. Suppose particles are initially dis-
persed throughout a less dense, incompressible fluid in a gravitational
field. The Boycott effect occurs when this mixture is in a container with
inclined walls as in Fig. 1. As the particles separate from the inwardly
inclined walls, a boundary layer of pure fluid forms. This layer is less
dense than the adjoining mixture. The resultant pressure gradient causes
the pure fluid in the boundary layer to flow upward along the wall,
forming a pure fluid layer at the top. This forces the mixture downward,
accelerating the downward flux of the particles.

As is shown in Refs. I and 3, an axisymmetric centrifuge cannot
produce an analogous enhancement in settling, but a centrifuge with a
meridional barrier can do so. The barrier allows an azimuthal pressure
gradient to counteract the Coriolis force, permitting flows reminiscent of
the Boycott effect. In this paper we consider only centrifuges with
meridional barriers.

2. GOVERNING EQUATIONS

This section follows the derivation and notation of Greenspan and
Ungarish (/). Asterisks denote dimensional variables. Suppose the
dispersed particles each have constant radius a* and density p¥, and they
occupy volume fraction a*. The subscript D distinguishes the dispersed
phase from the continuous phase, designated by the subscript C.
Variables characterizing the mixture have no subscripts; €.g.,

p* = (1 —a)pZ + ap}

FiG. 1. Boycott effect in gravitational settling.
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In a cylindrical coordinate system (r*.9*z*) rotating with angular
velocity %, we let ¢* denote the fluid velocity and

J*=ire+ 8+ jra
denote the volume flux. In the flows we consider, the relative velocity,

9 = q5 — q¢

is determined by the drag-bouyancy balance. Furthermore, we suppose
that the effective viscosity of the fluid depends only on the local volume
fraction. In that case we can approximate qf by

af = sBQ*r*fla)?
where

P} — p¥ _ _2a*
Iv*/Q*

and v* is the kinematic viscosity of the fluid. It is assumed that the
particle Taylor number, 8, which measures the ratio of the Coriolis force
to Stokes drag, is small. The factor f(a) in the expression for qf allows for
modification of the drag on a sphere when other spheres are nearby. For
consistency with the usual expression for Stokes drag, the infinite-
dilution limit of f must be unity:

lirr(} f(a)y=1

For definiteness in what follows, we adopt the expression suggested by
Ishii and Chawla (4),

a )2,5&M

f@y = -w(1-g

Here a,, is the maximal-packing volume fraction for the particles.

To obtain dimensionless variables, we scale velocity by |g|BQ*r¥, a
typical value of |q} |; length by r, the outer radius of the centrifuge; time
by 1/(¢|BQ*); and density by p¥ (I). The dimensionless continuity
equations are

) .
a—(:+d1v;,,=0 (2.1
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divj=0 (2.2)

Taking the stress term to be that of a constant-viscosity Newtonian fluid,
the momentum equation for the mixture is

(1 + ea)22Xq +|e|B [ %‘t‘—+ %V(q-q) + (VXq)Xq]

= —-éVP + %arr + E[%V(V . q)—VX(VXq)] —1elIBV-(afl — a)qzqzr)

where

E——L P——.I__P_*_ln*zn =g/
= pgn*rgd ’ - (n*r:)2|gl pé 2 re-, §=E€ IS,

and p* is the effective viscosity of the mixture.

Assume that the viscious forces are small compared to the Coriolis
force (2) (i.e., the Ekman number, E, is smalt), the Coriolis force is small
compared to the Stokes drag on a particle (i.e., B is small), and the
momentum-diffusion term and inertial terms in the momentum equation
are negligible. Then the momentum equation represents the balance of
Coriolis force by an azimuthal pressure gradient and bouyancy by
drag.

A section of a representative centrifuge with a meridional barrier is
shown in Fig. 2, with dimensionless inner radius r; and outer radius 1.
The top and bottom are described by the equations z = z{r) and z = z(r),
respectively, with angles of inclination y{(r) and yg(r). Greenspan and
Ungarish used the reduced momentum equation and the continuity
equations to show that, to a first-order approximation in B, if the initial
volume fraction, a,, is independent of z and 6, then o and j, are also
independent of z and 0. If ¢, is uniform (i.e., the mixture is initially
homogeneous), then a within the mixture region is a function only of
time and , is independent of z. In what follows, we deal only with initially
homogeneous mixtures.

Assume for definiteness that the dispersed phase is denser than the
continuous phase. Then a core of pure fluid forms during separation. Let
R denote the position of its interface with the mixture region and let S
denote the thickness of the sediment on the outer wall. Then R and S are
functions only of time. Also, define Q by Q(r.f) = r <j, > (rt), where j is
the approximation (to first order in ) to j, and < j,> is the azimuthally
averaged value of j .

Assuming the sediment layer on an inwardly inclined portion of a lid is
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FIG. 2. Initial centrifuge configuration.

thin, the boundary condition there would be j-n = 0 where n is a unit
normal to the lid. A thin inviscid layer of pure fluid forms on outwardly
inclined portions if EY*/B < 1 and |&| = 0(1). This is joined to the mixture
by a thinner, inviscid layer with negligible mass flux. Thus the boundary
condition there would be jp-n = 0.

Greenspan and Ungarish reduce the momentum equation and con-
tinuity equations to differential equations for a, @, and R. For ¢, constant
and all quantities azimuthally averaged, their equations reduce to the
following. The continuity equation (2.1) implies

da(t)

+20(a(t) =0, a0)=aq, (2.3)

where ¢(0) = ol — @) f(a). The continuity equation (2.2) and the
boundary conditions give
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Q(r.t) + [Zk Q%(rrﬂ + rC(r,t)] cot v, (r) + o (r)r? ————d)g?g;)) =0

o1 -S®»xn=0

for k = T and B, where C is a constant of intergration which depends
on the geometry of the centrifuge and where

o, = {0 for inwardly inclined lids fork = T and B

1 for outwardly inclined lids

Combining the equations for the top and bottom to eliminate C, we
obtain

90 _ -1

or Zy — Zg

{Q[tan Yt — tan yg] + 12 (@) [or tan y; — op tan yB]}

a

Q1 =S =0 (2.4)

Since the velocity of the pure fluid-mixture interface is the velocity of the
particles at the interface, one obtains the equation

dR(1) _ o(a(1)) QR(),1) -,
ai e RO+ =R RO=r (2.5)

Equations (2.3), (24), and (2.5), along with the explicit formula for S,

Qy —
ay — a(r)

S(t)=1—\/

determine R. Then R can be used to calculate the fraction of the particles,
F, which have settled:

1-8(z)

a(r) [21(r) — zg(r)]rdr

R

1
af () = zar)lrdr

7

Fiy=1- (2.6)

We seek to compute, as a figure of merit for any given centrifuge con-
figuration, the time 7, at which 95% of the particles have been separated.
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3. APPROXIMATE SOLUTION PROCEDURE

To find ¢, we apply a root-finding method, such as Newton's method or
the bisection method, to F(r) — 0.95 = 0. This requires that we be able to
evaluate R(z) for any ¢ To this end we first numerically solve (2.3) at
specified grid points and construct an interpolate for a. To evaluate R(),
we numerically integrate (2.5) up to ¢ The singularity can be eliminated
by replacing the differential equation for R with a differential equation
for R%. If an explicit method is used to solve the equation approximately,
at each time step the right-hand side of (2.5) is evaluated at previously
calculated values of R. At each of these time steps an ordinary differential
equation solver is used to solve (2.4) with time as a parameter, integrating
from

1-S8@¢)= \/(aM = a)/(ay — al(t))

to the previously calculated value of R.
An error estimate is given, without proof, in the following theorem.

Theorem. Suppose the step sizes in the differential equation solvers for
(2.3), (2.4), and (2.5) are all O(h), the local errors are O(h™"), the global
errors are O(4"), and the error in interpolating o is O(#"). Then for any ¢,
the error in approximately calculating F(r) using the above algorithm is
o).

The authors used a cubic spline to interpolate a (with error O(h*)) and
variable order step-size fifth- and sixth-order Runge-Kutta-Fehlberg
methods to solve the differential equations numerically. Thus, the error
in F(¢) was O(h*)). The maximum step size was £ = 0.1.

4. RESULTS

Several series of tests were run to show the effects of various aspects of
the geometry of the centrifuge on the time required for 95% separation to
occur. All quantities given are dimensionless unless otherwise stated. In
all cases, a,, was chosen to be 1 (3). Table 1 shows the effect of o, on the
separation time for the centrifuge in Fig. 3 with A = 1. In all subsequent
computations, a, is chosen to be 0.0002.

The results in Table 2 show the effect of the inner radius on the
separation time for centrifuges with horizontal lids (Fig. 4). With
horizontal lids, the dependent variables, a, Q. R, and ¢, are independent
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TABLE 1
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Height of 1. Endcap Slope of 1, Zero Inner Radius, and
Various Initial Concentrations (Fig. 3)

(z)

axial coordinate

o [
0.00002 0.6777
0.0002 0.6780
0.002 0.6814
0.02 0.7164
T 1
I.SOL -

.00

0.5

0.00

AL

0.00

0.50

radial coordinate (r)

FIGURE. 3.

1.00
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TABLE 2
Horizontal Endcaps with Various Inner Radii (Fig. 4)
¥y ts R(t.v)
0.0 1.495964 0.0
0.0001 1.495965 0.000448
0.001 1.495959 0.004480
0.01 1.495251 0.044352
0.1 1411147 0.409422
0.2 1.215510 0.670422
0.4 0.800125 0.889897
T T T T
- .50 -
~N
pd 0.25— -
o
£
b4
g 0.00~ -
o
B
» - 0.2 5.— -
(-]
-0.501" =
-0.75 Ll | 1

1
0.00 N 025 0350 075 1.0O

radial coordinate (r)

FIGURE. 4.
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of the height of the centrifuge (cf. Eq. 2.4 with yr = y5 = 0). When r, = 0,
no central core of pure fluid is formed (4), as was stated in Ref. I, where
the separation time was determined analytically in the limit a;— O for
= 0. For r; # 0, an inner core of pure fluid forms, shortening the
separation time. The value of a in the mixture region is unaffected since
the solution of (2.3) does not depend on the geometry of the centrifuge.
However, Q and R are affected by z;, zg, and r.

The next series (Fig. 3 and Table 3) reproduces results obtained in the
limit ;-0 in Ref. I. Greenspan and Ungarish showed that the
separation time depends on H cot v so that the decrease in ¢, could have
been obtained by increasing the slope rather than decreasing the height.

The results in Table 4 for the geometry of Fig. S show that en-
hancement gained by choosing r, # 0 is not significant compared to the
enhancement due to the Boycott effect. Therefore, #, is taken to be zero in
the computer runs reported below.

The next several sets of experiments show the effect of curved lids on
the Boycott effect. First, parallel parabolic curves are superimposed on a
centrifuge with a slope of 1 and a height of 1, as in Fig. 6. The separation
time was ¢, = 0.84 as compared to 1, = 0.68 for the centrifuge with linear
lids of slope 1. It appears that the curvature interferes with the Boycott
effect. With the nonparallel parabolic lids superimposed on a slope of 1
in Fig, 7, the result is even worse, 1, = 1.11.

In order to determine the effect of the amount of perturbation from
linear lids on the separation time, curves, each of which were one-half
period of a sine curve, with various amplitudes were superimposed on a
slope of 1. For parallel curves, as in Fig. §, the separation time increases
for small to moderate perturbations from linear lids (Table 5), pre-
sumably due to interference with the Boycott effect. For large amplitudes,
the separation time improves. This may be due to the large increase in the
surface area available for sedimentation or due to the increase in the
effective slopes of the lids due to their curvature. Nonparallel sine curves
were also superimposed on a slope of 1 (Fig. 9). The heights of the

TABLE 3
Various Heights and Endcap Slope of 1 (Fig. 3)
H t;
20 0.87
1.0 0.68
0.4 0.44

0.2 0.30
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TABLE 4
Height of 1, Endcap Slope of 1, and Various Inner Radii
(Fig. 5)
r 2
0.0 0.6780432
0.0001 0.6780421
0.001 0.6780407
0.01 0.6779274
0.1 0.6668140
02 0.6340866
] L
.50} —x -
H=|
—~ |.OO ~
N
©
2
S /7
§ s’
8 osof ~
K]
]
°,,\
)
b\o
0.00}- -1
/
/
/
-0.50i£ 1 i 1
000 0.50 .00

radial coordinate (r)

FIGURE. 5.
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.50

1.OO

)

(z

coordinate

050

axial

0.00

-0.50

1 1
0.00 0.50 [Xe]o)

radial coordinate (r)

FIG. 6. Parallel parabolic curves superimposed on endcap slope of 1.

centrifuges were adjusted to maintain a constant volume for all am-
plitudes. The interference with the Boycott effect (see Table 6) is the same
as it was for the parallel lids in Table 5.

The effect of introducing curvature to horizontal lids was also studied.
Sine curves with various amplitudes were superimposed on horizontal
lids (Fig. 10). The parallel lids show increasing improvement in the
separation time as the amplitude increases (Table 7), presumably for the
same reason that large perturbations from linear lids enhance separation
(cf. Table 5). The nonparallel lids with constant volume (Fig. 11) also
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.00

(z)

0.50

coordinate

axial

0.00

L
0.00 0.50 1.00

radial coordinate (r)

F1G6. 7. Nonparallel parabolic curves superimposed on endcap slope of 1.

show improvement with increasing amplitude (Table 8), but the im-
provement is not as great as is that for the parallel lids.

The final set of numerical experiments utilized centrifuges in which a
sawtooth pattern was superimposed on centrifuges with slope | and
height 1. A series of tests was made with parallel lids and with the
sawteeth having alternating slopes of 5 and —3. A cross section of a
representative centrifuge, with four teeth, is shown in Fig. 12. Note that
the height of the teeth decreases as the number of teeth increases. The
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100

radial coordinate (r)

FIG. 8. Sine curves superimposed on endcap slope of 1.

TABLE 5

Parallel Sine Curves Superimposed on
Endcap Slope of 1 (Fig. 8)

Amp I
0.0 0.68
0.1 0.75
0.2 0.84
04 0.98
0.8 0.65
1.6 0.39
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L75

1.50

1.25

.OO

075

axial coordinate (z)
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0.00
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0.00

radial

X
0.50

coordinate (r)

1.00
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F1G. 9. Nonparallel sine curves superimposed on endcap slope of 1. H = 1 — 4 amp/n.

Nonparallel Sine Curves Superimposed on

TABLE 6

Endcap Slope of 1 (Fig. 9)

Amp

L

0.0
0.1
0.2
04

0.68
0.75
0.83
1.01
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axial coordinate (z)

-0.50

050K —mmm - =W D

i
0.00 0.50

redial coordinate (r)

F1G. 10. Sine curves superimposed on horizontal endcaps.

TABLE 7

Parallel Sine Curves Superimposed on Endcap

Slope of 0 (Fig. 10)

Amp I
0.0 1.50
0.1 1.09
0.2 0.90
04 0.69
0.8 0.50
1.6 0.34
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F1G. 11. Nonparallel sine curves superimposed on horizontal endcaps. H = | — 4 amp/n.

Nonparallel Sine Curves Superimposed on

TABLE 8

Endcap Slope at 0 (Fig. 11)

Amp 1
0.0 1.50
0.1 141
0.2 134
04 1.23
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L L)
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5
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0.00 0.50 100

radial coordinate {r)

FiG. 12. Parallel sawteeth with alternating slopes of S and —3 superimposcd on endcap
slope of 1.

separation time improves as the number of teeth increases (see Table 9).
For shallower teeth, with alternating slopes of 3 and —1, the improvement
is not as great. With 10 teeth, the separation time was ¢, = 0.52, which is
worse than the time, 1, = 0.35, for the steeper teeth, but still better than the
separation time for no teeth (cf. Table 9). The configuration in Fig. 13,
having nonparallel teeth, was also tested. The separation time, z, = 0.98, is
worse than that with no teeth.
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TABLE 9
Parallel Sawtooth Lids with Alternating
Endcap Slopes of 5 and —3 (Fig. 12)

Number of teeth t
0 0.68
1 0.40
2 0.37
10 0.35
20 0.34

2.50

2.00

1.50

~ 100 4
~N
®
2 050 -
©
5
8
3 000 -
5

-0.50

-1.50

-2.00 L 1
0.00 050 .00

radial coordinate (r)

F1G. 13. Nonparallel sawteeth superimposed on endcap slope of 1.
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5. CONCLUSIONS

The centrifuge shapes studied were not selected for ease of manu-
facture. However, our study illustrates some aspects of the shape
dependence of separation. We confirm the results of Greenspan and
Ungarish (/): nonhorizontal lids are superior to horizontal lids. Here we
have demonstrated that a nonzero inner radius is less effective than
sloped lids in enhancing the separation. Furthermore, although super-
imposing a moderate curve onto a slope interferes with the Boycott effect,
a large curve or a sawtooth can improve the separation time. Finally, in
all of the above studies, parallel lids performed as well as, indeed usually
better than, nonparallel lids.
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