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SEPARATION SCIENCE AND TECHNOLOGY, 22(7), pp. 1691-1710, 1987 

Effects of Centrifuge Shape on the Separation of a Mixture 

H. EDWARD DONLEY 
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE 

WILLIAM H. INGHAM 
DEPARTMENT OF PHYSICS 

JAMES MADISON UNIVERSITY 
HARRISONBURG, VIRGINIA 22807 

Abstract 

This paper examines the effect of centrifuge shape on the separation time for a 
two-phase mixture in a centrifuge with a meridional barrier. The work is based on 
the results of Greenspan and Ungarish. Both the inner radius of the centrifuge 
and the shape of the lids affect the separation time. It was found. through 
numerical experiments. that altering the shapes of the lids yields more en- 
hancement than increasing the inner radius. Also. centrifuges with parallel. 
linear. sloped lids give better results than those with lids having slight or 
moderate curves superimposed on the linear lids. The curvature appears to 
interfere with the Boycott effect. However. a sawtooth pattern superimposed on 
the linear lids is an improvement over the linear lids. 

1. INTRODUCTION 

In this paper we consider a centrifuge that is filled with an in- 
compressible fluid containing small suspended particles of a second 
phase, either solid particles or droplets of a second, immiscible, 
incompressible fluid. We examine the effect of centrifuge shape on the 
time required for separation to occur. Our work is based on that of 
Greenspan and Ungarish ( I )  who have already simplified the governing 
equations and have analyzed several important centrifuge shapes. 

The Boycott effect in gravitational settling, most recently studied by 
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1692 DONLEY AND INGHAM 

Acrivos and Herbolzheimer (2), suggests that alteration of centrifuge 
geometry can enhance separation. Suppose particles are initially dis- 
persed throughout a less dense, incompressible fluid in a gravitational 
field. The Boycott effect occurs when this mixture is in a container with 
inclined walls as in Fig. 1. As the particles separate from the inwardly 
inclined walls, a boundary layer of pure fluid forms. This layer is less 
dense than the adjoining mixture. The resultant pressure gradient causes 
the pure fluid in the boundary layer to flow upward along the wall, 
forming a pure fluid layer at the top. This forces the mixture downward, 
accelerating the downward flux of the particles. 

As is shown in Refs. I and 3, an axisymmetric centrifuge cannot 
produce an analogous enhancement in settling, but a centrifuge with a 
meridional barrier can do so. The barrier allows an azimuthal pressure 
gradient to counteract the Coriolis force, permitting flows reminiscent of 
the Boycott effect. In this paper we consider only centrifuges with 
meridional barriers. 

2. GOVERNING EQUATIONS 

This section follows the derivation and notation of Greenspan and 
Ungarish ( I ) .  Asterisks denote dimensional variables. Suppose the 
dispersed particles each have constant radius a* and density pg, and they 
occupy volume fraction a*. The subscript D distinguishes the dispersed 
phase from the continuous phase, designated by the subscript C. 
Variables characterizing the mixture have no subscripts; e.g., 

p* = (1 - a ) p r  + ap$  

FIG. I .  Boycott effect in gravitational settling 
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EFFECTS OF CENTRIFUGE SHAPE 1693 

In a cylindrical coordinate system (r*,O*p*) rotating with angular 
velocity a*, we let q* denote the fluid velocity and 

j* =j,*i + j $ l )  + j , * i  

denote the volume flux. In the flows we consider, the relative velocity, 

is determined by the drag-bouyancy balance. Furthermore, we suppose 
that the effective viscosity of the fluid depends only on the local volume 
fraction. In that case we can approximate @ by 

q; = &pn*r*f(a)P 

where 

2a*2 p =  ~ 

9v*/n*  ? 
PT, - P r  

PT. 
& =  

and v* is the kinematic viscosity of the fluid. It is assumed that the 
particle Taylor number, p, which measures the ratio of the Coriolis force 
to Stokes drag, is small. The factorf(a) in the expression for q; allows for 
modification of the drag on a sphere when other spheres are nearby. For 
consistency with the usual expression for Stokes drag, the infinite- 
dilution limit off must be unity: 

lim f ( a )  = 1 
a-0 

For definiteness in what follows, we adopt the expression suggested by 
Ishii and Chawla (4), 

f ( a )  = ( 1  - a )  1 - - ( 
Here aM is the maximal-packing volume fraction for the particles. 

To obtain dimensionless variables, we scale velocity by I E I pn*r,*, a 
typical value of I @ I ; length by r;, the outer radius of the centrifuge; time 
by l/( E I pa*); and density by pz ( I ) .  The dimensionless continuity 
equations are * + div j ,  = 0 

a t  
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1694 DONLEY AND INGHAM 

div j = 0 (2.2) 

Taking the stress term to be that of a constant-viscosity Newtonian fluid, 
the momentum equation for the mixture is 

( 1  + & a ) t f X q  + I E I p [ 2% + $V(q.  q) + ( 0 X q ) X q l  
at 

where 

and p* is the effective viscosity of the mixture. 
Assume that the viscious forces are small compared to the Coriolis 

force (2) (i.e., the Ekman number, E. is small), the Coriolis force is small 
compared to the Stokes drag on a particle (i.e., p is small), and the 
momentum-diffusion term and inertial terms in the momentum equation 
are negligible. Then the momentum equation represents the balance of 
Coriolis force by an azimuthal pressure gradient and bouyancy by 
drag. 

A section of a representative centrifuge with a meridional barrier is 
shown in Fig. 2, with dimensionless inner radius ri and outer radius 1. 
The top and bottom are described by the equations z = z&) and z = zB(r), 
respectively, with angles of inclination y7jr) and ys(r). Greenspan and 
Ungarish used the reduced momentum equation and the continuity 
equations to show that, to a first-order approximation in 0, if the initial 
volume fraction, a,, is independent of z and 0, then a and j ,  are also 
independent of z and 0. If a, is uniform (i.e., the mixture is initially 
homogeneous), then a within the mixture region is a function only of 
time and j ,  is independent of z. In what follows, we deal only with initially 
homogeneous mixtures. 

Assume for definiteness that the dispersed phase is denser than the 
continuous phase. Then a core of pure fluid forms during separation. Let 
R denote the position of its interface with the mixture region and let S 
denote the thickness of the sediment on the outer wall. Then R and S are 
functions only of time. Also, define Q by Q(r,t) = r < j ,  > (ct), wherej, is 
the approximation (to first order in p) toj, and <j,> is the azimuthally 
averaged value ofj,. 

Assuming the sediment layer on an inwardly inclined portion of a lid is 
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EFFECTS OF CENTRIFUGE SHAPE 1695 

I I 
r. I 
I 

radial coordinate ( r ) 
FIG. 2. Initial centrifuge configuration. 

thin, the boundary condition there would be j . n = 0 where n is a unit 
normal to the lid. A thin inviscid layer of pure fluid forms on outwardly 
inclined portions if E'''/P << 1 and I E 1 = O(1). This is joined to the mixture 
by a thinner, inviscid layer with negligible mass flux. Thus the boundary 
condition there would be j,-n = 0. 

Greenspan and Ungarish reduce the momentum equation and con- 
tinuity equations to differential equations for a, Q. and R. For a, constant 
and all quantities azimuthally averaged, their equations reduce to the 
following. The continuity equation (2.1) implies 

where @(a) = a(1 - a) f (a ) .  The continuity equation (2.2) and the 
boundary conditions give 
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1696 DONLEY AND INGHAM 

Q(l - S(t),t) = 0 

for k = T and B, where C is a constant of intergration which depends 
on the geometry of the centrifuge and where 

0 for inwardly inclined lids 
1 for outwardly inclined lids 

Ok = { for k = T and B 

Combining the equations for the top and bottom to eliminate C, we 
obtain 

Q(l  - S ( t ) , t )  = 0 (2.4) 

Since the velocity of the pure fluid-mixture interface is the velocity of the 
particles at the interface, one obtains the equation 

Equations (2.3), (2.4), and (2.5), along with the explicit formula for S. 

determine R. Then R can be used to calculate the fraction of the particles, 
F. which have settled: 

1 -S(t )  

a(r$ [ Z d T )  - Z B ( T ) l r d r  

( 2 . 6 )  
R ( 0  

I 
F ( t )  = 1 - 

.IJ, [ z T ( r )  - z E ( r ) l r d r  

We seek to compute, as a figure of merit for any given centrifuge con- 
figuration, the time t,v at which 95% of the particles have been separated. 
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3. APPROXIMATE SOLUTION PROCEDURE 

To find t,7, we apply a root-finding method, such as Newton's method or 
the bisection method, to F(t) - 0.95 = 0. This requires that we be able to 
evaluate R ( f )  for any t. To this end we first numerically solve (2.3) at 
specified grid points and construct an interpolate for a. To evaluate R(t), 
we numerically integrate (2.5) up to f .  The singularity can be eliminated 
by replacing the differential equation for R with a differential equation 
for RZ. If an explicit method is used to solve the equation approximately, 
at each time step the right-hand side of (2.5) is evaluated at previously 
calculated values of R. At each of these time steps an ordinary differential 
equation solver is used to solve (2.4) with time as a parameter, integrating 
from 

1 - S ( f )  = d(aM - a,)/(a, - a( t ) )  

to the previously calculated value of R. 
An error estimate is given, without proof, in the following theorem. 

Theorem. Suppose the step sizes in the differentia! equation solvers for 
(2.3), (2.4), and (2.5) are all O(h), the local errors are O(h'+'), the global 
errors are O(h'), and the error in interpolating a is O(h'). Then for any f ,  

the error in approximately calculating F(f)  using the above algorithm is 
O(h'). 

The authors used a cubic spline to interpolate a (with error O(h4)) and 
variable order step-size fifth- and sixth-order Runge-Kutta-Fehlberg 
methods to solve the differential equations numerically. Thus, the error 
in F(t) was O(h4)). The maximum step size was h = 0.1. 

4. RESULTS 

Several series of tests were run to show the effects of various aspects of 
the geometry of the centrifuge on the time required for 95% separation to 
occur. All quantities given are dimensionless unless otherwise stated. In 
all cases, a, was chosen to be 1 (3). Table 1 shows the effect of a, on the 
separation time for the centrifuge in Fig. 3 with H = 1. In all subsequent 
computations, a, is chosen to be 0.0002. 

The results in Table 2 show the effect of the inner radius on the 
separation time for centrifuges with horizontal lids (Fig. 4). With 
horizontal lids, the dependent variables, a, Q. R, and tC, are independent 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1698 DONLEY AND INGHAM 

T B L E  1 
Height of 1 .  Endcap Slope of I ,  Zero Inner Radius, and 

Various Initial Concentrations (Fig. 3) 

a? tr 
0.00002 0.6777 
0.0002 0.6780 
0.002 11.6814 
0.02 0.7 164 

radial coordinate ( r  1 

FIGURE. 3. 
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EFFECTS OF CENTRIFUGE SHAPE 

TABLE 2 
Horizontal Endcaps with Various Inner Radii (Fig. 4) 

0.0 1.495964 0.0 
0.0001 1.495965 0.oO0448 
0.001 1.495959 0.004480 
0.01 1.49525 1 0.044352 
0.1 1.41 1147 0.409422 
0.2 1.215510 0.670422 
0.4 0.800125 0.889897 

0.50 - 

0.25 - 

0.00 - 

-0.25 - 

-0.50 - 

1699 

- 0 . 7 5 2  
0.00 ri 0.25 aso 0.75 LOO 

radial coordinate ( r  1 

FIGURE. 4. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1700 DONLEY AND INGHAM 

of the height of the centrifuge (cf. Eq. 2.4 with yT = ye = 0). When r, = 0, 
no central core of pure fluid is formed (4),  as was stated in Ref. I, where 
the separation time was determined analytically in the limit a, + 0 for r, 
= 0. For r, # 0, an inner core of pure fluid forms, shortening the 
separation time. The value of a in the mixture region is unaffected since 
the solution of (2.3) does not depend on the geometry of the centrifuge. 
However, Q and R are affected by zT ,  zB, and r,. 

The next series (Fig. 3 and Table 3 )  reproduces results obtained in the 
limit a,+O in Ref. 1. Greenspan and Ungarish showed that the 
separation time depends on H cot y so that the decrease in t ,  could have 
been obtained by increasing the slope rather than decreasing the height. 

The results in Table 4 for the geometry of Fig. 5 show that en- 
hancement gained by choosing r, # 0 is not significant compared to the 
enhancement due to the Boycott effect. Therefore, r, is taken to be zero in 
the computer runs reported below. 

The next several sets of experiments show the effect of curved lids on 
the Boycott effect. First, parallel parabolic curves are superimposed on a 
centrifuge with a slope of 1 and a height of 1 ,  as in Fig. 6. The separation 
time was r, = 0.84 as compared to t ,  = 0.68 for the centrifuge with linear 
lids of slope 1. It appears that the curvature interferes with the Boycott 
effect. With the nonparallel parabolic lids superimposed on a slope of 1 
in Fig. 7, the result is even worse, t ,  = 1.1 1. 

In order to determine the effect of the amount of perturbation from 
linear lids on the separation time, curves, each of which were one-half 
period of a sine curve, with various amplitudes were superimposed on a 
slope of 1 .  For parallel curves, as in Fig. 8, the separation time increases 
for small to moderate perturbations from linear lids (Table 5) ,  pre- 
sumably due to interference with the Boycott effect. For large amplitudes, 
the separation time improves. This may be due to the large increase in the 
surface area available for sedimentation or due to the increase in the 
effective slopes of the lids due to their curvature. Nonparallel sine curves 
were also superimposed on a slope of 1 (Fig. 9). The heights of the 

TABLE 3 
Various Heights and Endcap Slope of 1 (Fig. 3) 

H t ,T  

2.0 0.87 
1 .0 0.68 
0.4 0.44 
0.2 0.30 
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EFFECTS OF CENTRIFUGE SHAPE 

TABLE 4 
Height of 1, Endcap Slope of I .  and Various Inner Radii 

(Fig. 5 )  

0.0 
0.0001 
0.001 
0.01 
0.1 
0.2 

0.6780432 
0.6780421 
0.6780407 
0.6779274 
0.6668 140 
0.6340866 

/ 
/ 

/ +  
/ 

T 

1 
I 1 1 

3 ri 0.50 1.00 

radial coordinate ( r  1 

1701 

FIGURE. 5 .  
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0) 
c 
!2 
b 
8 

.- 
TI 

radial coordinate ( r ) 

FIG. 6. Parallel parabolic curves superimposed on endcap slope of 1. 

centrifuges were adjusted to maintain a constant volume for all am- 
plitudes. The interference with the Boycott effect (see Table 6) is the same 
as it was for the parallel lids in Table 5. 

The effect of introducing curvature to horizontal lids was also studied. 
Sine curves with various amplitudes were superimposed on horizontal 
lids (Fig. lo). The parallel lids show increasing improvement in the 
separation time as the amplitude increases (Table 7), presumably for the 
same reason that large perturbations from linear lids enhance separation 
(cf. Table 5). The nonparallel lids with constant volume (Fig. 11) also 
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EFFECTS OF CENTRIFUGE SHAPE 1703 

0.00 0'50 1.00 

radial coordinate ( r  ) 

FIG. 7.  Nonparallel parabolic curves superimposed on endcap slope of 1 

show improvement with increasing amplitude (Table 8) ,  but the im- 
provement is not as great as is that for the parallel lids. 

The final set of numerical experiments utilized centrifuges in which a 
sawtooth pattern was superimposed on centrifuges with slope 1 and 
height 1. A series of tests was made with parallel lids and with the 
sawteeth having alternating slopes of 5 and -3. A cross section of a 
representative centrifuge, with four teeth, is shown in Fig. 12. Note that 
the height of the teeth decreases as the number of teeth increases. The 
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1.50 - 

0.00 0.50 1.00 

radial coordinate ( r  ) 

FIG. 8. Sine curves superimposed on endcap slope of 1 

TABLE 5 
Parallel Sine Curves Superimposed on 

Endcap Slope of 1 (Fig. 8) 

0.0 0.68 
0.1 0.75 
0.2 0.84 
0.4 0.98 
0.8 0.65 
1.6 0.39 
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h 

N 
Y 

-0.25 
0.00 0.50 1.00 

radial coordinate ( r  ) 

FIG. 9. Nonparallel sine curves superimposed on endcap slope of 1. H = 1 - 4 amp/n. 

TABLE 6 
Nonparallel Sine Curves Superimposed on 

Endcap Slope of 1 (Fig. 9) 

0.0 
0.1 
0.2 
0.4 

0.68 
0.75 
0.83 
1.01 
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CI 

N 
Y 

0 

0 
E 
U 

c 

.- 
- 
5i 
8 - 
0 
X 
.- 
0 

FIG. 

I I 

H=l 
0.00 - 

I I 

0.00 0.50 1.00 

radial coordinate ( r  ) 

10. Sine curves superimposed on horizontal endcaps 

TABLE 7 
Parallel Sine Curves Superimposed on Endcap 

Slope of 0 (Fig. 10) 

Amp 2.7 

0.0 
0. I 
0.2 
0.4 
0.8 
1.6 

1 .50 
1.09 
0.90 
0.69 
0.50 
0.34 
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0.7 5 

1707 

c 

- 
0 

0 
0 

0 
x 
0 

b 

- .- 

-0.25- 

- 0.75! 
0.00 0.25 0.50 0.15 1.00 1.25 

radial coordinate (r 1 

FIG. 11. Nonparallel sine curves superimposed on horizontal endcaps. H = 1 - 4 amp/n. 

TABLE 8 
Nonparallel Sine Curves Superimposed on 

Endcap Slope at 0 (Fig. 11) 

0.0 
0.1 
0.2 
0.4 

1.50 
1.41 
1.34 
1.23 
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h 

N 
Y 

Q 

0 c 
0 

0 
0 
0 

0 
X 
0 

4- 

.- 
L 

- .- 

h 1 

0.00 0.50 1.00 
radial coordinate ( r ) 

FIG. 12. Parallel sawteeth with alternating slopes of 5 and -3  superimposcd on endcap 
slope of 1. 

separation time improves as the number of teeth increases (see Table 9). 
For shallower teeth, with alternating slopes of 3 and - 1 ,  the improvement 
is not as great. With 10 teeth, the separation time was t, = 0.52, which is 
worse than the time, t ,  = 0.35, for the steeper teeth, but still better than the 
separation time for no teeth (cf. Table 9). The configuration in Fig. 13, 
having nonparallel teeth, was also tested. The separation time, t ,  = 0.98, is 
worse than that with no teeth. 
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TABLE 9 
Parallel Sawtooth Lids with Alternating 

Endcap Slopes of 5 and - 3  (Fig. 12) 
.- 

Number of teeth f.F 

0 
1 
2 

10 
20 

0.68 
0.40 
0.37 
0.35 
0.34 

-2.00 
0.00 0.50 1.00 

radial coordinate (r  

FIG. 13. Nonparallel sawteeth superimposed on endcap slope of 1 .  
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5. CONCLUSIONS 

The centrifuge shapes studied were not selected for ease of manu- 
facture. However, our study illustrates some aspects of the shape 
dependence of separation. We confirm the results of Greenspan and 
Ungarish ( I ) :  nonhorizontal lids are superior to horizontal lids. Here we 
have demonstrated that a nonzero inner radius is less effective than 
sloped lids in enhancing the separation. Furthermore, although super- 
imposing a moderate curve onto a slope interferes with the Boycott effect, 
a large curve or a sawtooth can improve the separation time. Finally, in 
all of the above studies, parallel lids performed as well as, indeed usually 
better than, nonparallel lids. 
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